skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huan, Yu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The B4/B5 neurons in Aplysia californica have multiple functions. In this study, we further characterized B4/B5’s sensory responses to mechanical stimuli at different locations in the feeding apparatus and identified their direct motor effect on the muscles. The bidirectional signaling of B4/B5, which was also observed in freely feeding animals, suggests that these neurons may play a role in detecting nociceptive or proprioceptive information and regulating the movements that facilitate particular feeding behaviors. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Abstract The coordination of complex behavior requires knowledge of both neural dynamics and the mechanics of the periphery. The feeding system ofAplysia californicais an excellent model for investigating questions in soft body systems’ neuromechanics because of its experimental tractability. Prior work has attempted to elucidate the mechanical properties of the periphery by using a Hill-type muscle model to characterize the force generation capabilities of the key protractor muscle responsible for movingAplysia’s grasper anteriorly, the I2 muscle. However, the I1/I3 muscle, which is the main driver of retractions ofAplysia’s grasper, has not been characterized. Because of the importance of the musculature’s properties in generating functional behavior, understanding the properties of muscles like the I1/I3 complex may help to create more realistic simulations of the feeding behavior ofAplysia, which can aid in greater understanding of the neuromechanics of soft-bodied systems. To bridge this gap, in this work, the I1/I3 muscle complex was characterized using force-frequency, length-tension, and force-velocity experiments and showed that a Hill-type model can accurately predict its force-generation properties. Furthermore, the muscle’s peak isometric force and stiffness were found to exceed those of the I2 muscle, and these results were analyzed in the context of prior studies on the I1/I3 complex’s kinematics in vivo. 
    more » « less
  3. Abstract Objective. To understand neural circuit dynamics, it is critical to manipulate and record many individual neurons. Traditional recording methods, such as glass microelectrodes, can only control a small number of neurons. More recently, devices with high electrode density have been developed, but few of them can be used for intracellular recording or stimulation in intact nervous systems. Carbon fiber electrodes (CFEs) are 8 µ m-diameter electrodes that can be assembled into dense arrays (pitches ⩾ 80 µ m). They have good signal-to-noise ratios (SNRs) and provide stable extracellular recordings both acutely and chronically in neural tissue in vivo (e.g. rat motor cortex). The small fiber size suggests that arrays could be used for intracellular stimulation. Approach. We tested CFEs for intracellular stimulation using the large identified and electrically compact neurons of the marine mollusk Aplysia californica . Neuron cell bodies in Aplysia range from 30 µ m to over 250 µ m. We compared the efficacy of CFEs to glass microelectrodes by impaling the same neuron’s cell body with both electrodes and connecting them to a DC coupled amplifier. Main results. We observed that intracellular waveforms were essentially identical, but the amplitude and SNR in the CFE were lower than in the glass microelectrode. CFE arrays could record from 3 to 8 neurons simultaneously for many hours, and many of these recordings were intracellular, as shown by simultaneous glass microelectrode recordings. CFEs coated with platinum-iridium could stimulate and had stable impedances over many hours. CFEs not within neurons could record local extracellular activity. Despite the lower SNR, the CFEs could record synaptic potentials. CFEs were less sensitive to mechanical perturbations than glass microelectrodes. Significance. The ability to do stable multi-channel recording while stimulating and recording intracellularly make CFEs a powerful new technology for studying neural circuit dynamics. 
    more » « less
  4. Abstract The semiconductor tracker (SCT) is one of the tracking systems for charged particles in the ATLAS detector. It consists of 4088 silicon strip sensor modules.During Run 2 (2015–2018) the Large Hadron Collider delivered an integrated luminosity of 156 fb -1 to the ATLAS experiment at a centre-of-mass proton-proton collision energy of 13 TeV. The instantaneous luminosity and pile-up conditions were far in excess of those assumed in the original design of the SCT detector.Due to improvements to the data acquisition system, the SCT operated stably throughout Run 2.It was available for 99.9% of the integrated luminosity and achieved a data-quality efficiency of 99.85%.Detailed studies have been made of the leakage current in SCT modules and the evolution of the full depletion voltage, which are used to study the impact of radiation damage to the modules. 
    more » « less